VectorBucketScope
import { VectorBucketScope } from "https://esm.sh/@supabase/storage-js@2.89.0/dist/index.d.mts";class VectorBucketScope extends VectorIndexApi { }
constructor(
url: string,
headers: {},
[key: string]: string;
vectorBucketName: string,
fetch?: Fetch,
);private vectorBucketName;
createIndex(options: Omit<CreateIndexOptions, "vectorBucketName">): Promise<ApiResponse<undefined>>;
listIndexes(options?: Omit<ListIndexesOptions, "vectorBucketName">): Promise<ApiResponse<ListIndexesResponse>>;
§Constructors
§Properties
§Methods
§
createIndex(options: Omit<CreateIndexOptions, "vectorBucketName">): Promise<ApiResponse<undefined>>
[src]@param options
- Index configuration (vectorBucketName is automatically set)
@return
Promise with empty response on success or error
@example
const bucket = supabase.storage.vectors.from('embeddings-prod')
await bucket.createIndex({
indexName: 'documents-openai',
dataType: 'float32',
dimension: 1536,
distanceMetric: 'cosine',
metadataConfiguration: {
nonFilterableMetadataKeys: ['raw_text']
}
})
§
deleteIndex(indexName: string): Promise<ApiResponse<undefined>>
[src]@param indexName
- Name of the index to delete
@return
Promise with empty response on success or error
@example
const bucket = supabase.storage.vectors.from('embeddings-prod')
await bucket.deleteIndex('old-index')
§
getIndex(indexName: string): Promise<ApiResponse<{
[src]index: VectorIndex;
}>>@param indexName
- Name of the index to retrieve
@return
Promise with index metadata or error
@example
const bucket = supabase.storage.vectors.from('embeddings-prod')
const { data } = await bucket.getIndex('documents-openai')
console.log('Dimension:', data?.index.dimension)
§
index(indexName: string): VectorIndexScope
[src]@param indexName
- Name of the index
@return
Index-scoped client with vector data operations
@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
// Insert vectors
await index.putVectors({
vectors: [
{ key: 'doc-1', data: { float32: [...] }, metadata: { title: 'Intro' } }
]
})
// Query similar vectors
const { data } = await index.queryVectors({
queryVector: { float32: [...] },
topK: 5
})
§
listIndexes(options?: Omit<ListIndexesOptions, "vectorBucketName">): Promise<ApiResponse<ListIndexesResponse>>
[src]@param options
- Listing options (vectorBucketName is automatically set)
@return
Promise with response containing indexes array and pagination token or error
@example
const bucket = supabase.storage.vectors.from('embeddings-prod')
const { data } = await bucket.listIndexes({ prefix: 'documents-' })