Hi there! Are you looking for the official Deno documentation? Try docs.deno.com for all your Deno learning needs.

VectorIndexScope

import { VectorIndexScope } from "https://esm.sh/@supabase/storage-js@2.89.0/dist/index.d.mts";
class VectorIndexScope extends VectorDataApi {
constructor(
url: string,
headers: {
[key: string]: string;
}
,
vectorBucketName: string,
indexName: string,
fetch?: Fetch,
);
private indexName;
private vectorBucketName;
 
deleteVectors(options: Omit<DeleteVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<undefined>>;
getVectors(options: Omit<GetVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<GetVectorsResponse>>;
listVectors(options?: Omit<ListVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<ListVectorsResponse>>;
putVectors(options: Omit<PutVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<undefined>>;
queryVectors(options: Omit<QueryVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<QueryVectorsResponse>>;
}

§Extends

§
VectorDataApi
[src]

§Constructors

§
new VectorIndexScope(url: string, headers: {
[key: string]: string;
}
, vectorBucketName: string, indexName: string, fetch?: Fetch)
[src]
@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')

§Properties

§
indexName
[src]
§
vectorBucketName
[src]

§Methods

§
deleteVectors(options: Omit<DeleteVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<undefined>>
[src]
@param options
  • Deletion options (bucket and index names automatically set)
@return

Promise with empty response on success or error

@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
await index.deleteVectors({
  keys: ['doc-1', 'doc-2', 'doc-3']
})
§
getVectors(options: Omit<GetVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<GetVectorsResponse>>
[src]
@param options
  • Vector retrieval options (bucket and index names automatically set)
@return

Promise with response containing vectors array or error

@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
const { data } = await index.getVectors({
  keys: ['doc-1', 'doc-2'],
  returnMetadata: true
})
§
listVectors(options?: Omit<ListVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<ListVectorsResponse>>
[src]
@param options
  • Listing options (bucket and index names automatically set)
@return

Promise with response containing vectors array and pagination token or error

@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
const { data } = await index.listVectors({
  maxResults: 500,
  returnMetadata: true
})
§
putVectors(options: Omit<PutVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<undefined>>
[src]
@param options
  • Vector insertion options (bucket and index names automatically set)
@return

Promise with empty response on success or error

@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
await index.putVectors({
  vectors: [
    {
      key: 'doc-1',
      data: { float32: [0.1, 0.2, ...] },
      metadata: { title: 'Introduction', page: 1 }
    }
  ]
})
§
queryVectors(options: Omit<QueryVectorsOptions, "vectorBucketName" | "indexName">): Promise<ApiResponse<QueryVectorsResponse>>
[src]
@param options
  • Query options (bucket and index names automatically set)
@return

Promise with response containing matches array of similar vectors ordered by distance or error

@example
const index = supabase.storage.vectors.from('embeddings-prod').index('documents-openai')
const { data } = await index.queryVectors({
  queryVector: { float32: [0.1, 0.2, ...] },
  topK: 5,
  filter: { category: 'technical' },
  returnDistance: true,
  returnMetadata: true
})